The Digitization of Plastics Fabrication (3)

“Printoptical Technology offers Unparalleled Design Freedom to Designers and Luminaire Makers resulting in Optimized Design Processes, a shortened Product Time-to-Market and an overall Increased Competitive Edge”

Optimized Design Processes
The longer an optic takes in the design and prototyping phase, the longer it takes the lighting fixture to get to market, meaning less potential profit for the company. With increasing pressure to get products to market quickly, companies are compelled to make quick yet accurate decisions during the conceptual stage of design. These decisions can affect the majority of total cost factors by establishing material selection, manufacturing techniques and design longevity. Printoptical Technology can optimize design processes for greatest potential profit by speeding iterations through product testing. An optimized design process with more prototype iterations can help minimize risk of product failure. Because Printoptical Platforms can produce optics with fine feature details, designers can be more confident in their work. Making needed changes as early as possible saves money and time. Optics made by 3D printing can give optical designers and engineers a thorough understanding of potential lighting products earlier in the design process than other methods, minimizing the risk that problems will go unnoticed until it’s too late.

Reasons to Adopt Printoptical Technology
The practical reasons for adopting Printoptical Technology are fairly obvious: no tooling required, new design opportunities, easy iterations, fast product availability. However, consider the effects that it can have on the scale and reach of projects. With Printoptical Technology designers are no longer constrained by space or volume limitations, like when they use injection molding. They can build greener, smarter and bigger optics and experiment with all types of new layouts without loss of tooling and investments.

Freeform Optics
Moreover, it is possible to create freeform optics: novel optics that are designed in a asymmetric and complex way. Freeform optics are difficult to make using the traditional fabrication methods, and the making would rather have to be based on ultra-precision machining technology. This novel Printoptical Technology can be widely applied to machining freeform plastic optics. In this way, innovative optoelectronic products can be supplied to the market at a competitive price. Printoptical Technology gives the freedom to suit nearly every optical application, giving the design freedom to achieve the exact optic the maker wants, without compromise.

New ways of design, out of the box thinking
Designers are encouraged to broaden their horizon and to change their ‘mindset’, and start a completely new way of thinking. The results of the design process can be new geometric or freeform shapes that may include transparent prisms or lenses, as well as colored lenses, lens combinations, full color 3D graphics and textures, like integrated surface structures and company logos. Even though the material is deposited in discrete drops, the resulting surface is perfectly smooth. This is accomplished by delaying the time between the jetting of the droplets and the application of UV light, which gives the polymer time to flow and for each droplet to lose its spherical form. The mechanism for surface formation is surface tension, a phenomenon of nature which produces surfaces more smooth that any man-made process can match. Optical quality surfaces are achieved with no post processing.

Advanced multi-lens, integrated in wood grain and matte texture

Advanced multi-lens, integrated in wood grain and matte texture

Shortened time to market
With these digital manufacturing applications, the designers and engineers can make alterations to their optical designs in seconds, and see how every minute change will affect the entire fixture design. The Printoptical Software provides a highly cost-efficient means of producing numerous optical design iterations and gaining immediate feedback throughout the critical beginning stages of the development process. The ability to refine form, fit and function of the optics quickly can significantly improve production costs and time to market. This can create a distinct competitive advantage for those companies who include Printoptical Technology as an integral part of their overall design process. The speed, consistency, accuracy and low cost of this process will help lighting companies reduce the overall time-to-market and maintain a competitive edge. The engineers can properly address all potential problems with an optic before construction begins, they’ll save time, money, physical resources and maximize the efficiency of their team. What would have seemed extremely tedious and time-consuming in the past years – such as designing and setting up an production line, can now be done in a fraction of the time.

Increased competitiveness
Undoubtedly, 3D printing of optics is a step in the right direction for saving our planet. The world economy is in dire straits, and highly respected global lighting companies are laying off workers by hundreds, or have to shut down completely. Local markets are flooded with low-quality, cheap lighting alternatives and suppliers are shutting their doors due to devastating decreases in consumer and OEM demand. Right now, the main question on every manufacturer’s mind is: how do we stay competitive? It turns out that in this case, helping the environment can dramatically help the bottom line. By cutting upfront cost, generating less need for working capital, delivering a high return on investment and contributing to revenue increases, digital manufacturing can save companies money, time and make them even more attractive as a potential business partner.

Thanks for reading part 3/4 of this blog on the digitization of optics fabrication. Next week, the last edition will be published with more views on a ‘third industrial revolution’ and conclusions.

Lighting the Future: LEDs & OLEDs – How it Works

Recently, I discovered a video about Light Emitting Diodes (LEDs) and Organic LEDs (OLEDs). How they work, the difference between them, clearly explained by inside industry experts. Learn about the inventors of the lights at the end of the program.

LEDs use pn junctions where holes and free electrons combine to form a photon at the boundary between the p and n type materials. The OLED uses thin organic (molecule with carbon) layers evaporated or deposited on a flat substrate material.

Please take a few minutes of your time to learn about these basics of future lighting inspiration. It might help you to understand the opportunities with and application of 3D printed optics as well.

The Digitization of Plastics Fabrication (2)

“The Long Tail Effect for LED Lighting Optics: This New Way of Optics Manufacturing Offers a Greater Product Variety and Higher Profit Margins”

Economies of Scale
Today, if you ask a conventional optics supplier to make an LED lighting optic to your custom need, you will be presented with a daunting minimum order quantity and an up-front cost of tens of thousands of Euros. Your supplier has to cover the costs to produce a mold, and set up their expensive equipment for a long enough production run to warrant the investment. Doing that for one single optical prototype or limited series would be prohibitively expensive. It is true that if you finally start producing thousands of optics at the end, each optic will be much inexpensive, due to ‘economies of scale’. However, the business imperative to achieve such economies of scale has fundamentally distorted the economics of the lighting industry, severely constraining the number of new products that can be introduced, and making it hard to stay abreast of changes in technologies, availability of supply or trends in market demand.

Manufacturing as a Service
Thanks to the invention of Printoptical Technology – 100% digitally run by CAD-driven software – for an additively manufactured LED lighting optic economies of scale don’t matter anymore. This will be a huge advantage for lighting entrepreneurs who are, due to their limited availability of cash, not able to introduce new designs without the cost of a facility or distant manufacturing firm. A significant part of – sometimes very brilliant – product ideas remains unexploited in the desk archive. Thanks to the wide use of 3D-CAD and lighting design software from providers, like Autodesk, Solid Works, Photopia and LightTools, designs can be created easily, endlessly tweaked and converted easily at low cost. The cost of setting up the ‘Printoptical Printing Platform’ is the same whether it makes one thing or as many production lots as can fit inside the machine. Like a printing press that pushes out one or many different print brochures, the machine keep going until the ‘ink cartridge’ – a container with a liquid Polymer – is empty, and the ‘paper’ – raw translucent substrate materials like PMMA and Polycarbonates – needs to be replenished.

The Long Tail effect
Many optics engineers and designers work in the so called ‘long tail’, developing specialty optics, new designs, and lower-volume deployments. The long tail applications rarely have the sales volumes to justify large up-front investments in time or the resources to develop a “full” LED optic. This may be because these are new applications in the initial conception and research stages of a lighting product, or because they are new variations on an existing concept.

The Long Tail Effect for LED Optics: lower investment cost, increased flexibility and a greater product variety.

(Picture 1 – The long tail effect for LED lighting optics. The long tail is a way to describe optics specialties or niche applications in the Lighting Industry)

Revolutionary 3D printing process
Printoptical Technology will allow lighting optics to be produced in one step from a digital CAD file due to the new, revolutionary 3D printing process. Optics can be made economically in much smaller numbers, more flexibly and with a much lower input of labor, thanks to the use of new materials, processes, and on-demand CAD-based custom manufacturing services. Production is moving away from ‘mass manufacturing’ to ‘mass customization’ and back towards much more individualized production. Customers get a broader array of choices and solutions better fitted to their needs, and manufacturers earn the loyalty and higher profit margins that come with better satisfying individual customer demands and preferences.

This article is the second publication within a range of four articles written on the Additive Manufacturing of LED lighting optics. The next edition – to appear in the next couple of weeks – will explain the benefits for its adopters on design, time-to-market and competition in more detail.

LUXeXceL’s New Corporate Website

Working on the new LUXeXceL website project has been of great pleasure to all of us. (Re)launching a website is an intense experience, getting prepared for it, as well as preparing yourself for the type of visitors you’ll be gaining. But the right preparation for the launch and making sure you’ve got all the ducks in a row, will ensure that the launch is successful.

And it was. The positive response that was received since the launch, includes a significant increase in site traffic and leads. Our team will continue to enhance site experience for clients and prospects who identify LUXeXceL as their technology provider of choice!

Site enhancements
The newly designed website features a refreshed layout and improved functionality, built to enhance the overall user experience and corporate branding. The site has already experienced a significant increase in traffic and visitor engagement since its launch during the last week.

The functionality improvements to the site will enable us to deliver a more personalized experience to site visitors and allow them to learn about this emerging technology. Moreover, we help them to ease the adoption of this technology for their own industry by providing them further information, e.g. benefits, comparison charts, white papers, with many more technical information and backgrounds to follow.

Our goals
The objectives when building our new website included:

• Making it easier for visitors to learn about the innovated core technology and get in touch with industry insiders and experts via the corporate blog;

• Clearly position LUXeXceL as the “Innovator of Printoptical Technology”, including special attention for our the technology and its backgrounds;

• Enhance the user experience through refreshed design and logical (re)arrangement of content. Easy navigating, with the user to be on his ‘destination’ in max. 3 clicks is key;

The ‘quick menu’ in the footer makes common or frequently searched topics easy accessible in one click, same as the news / blog links at the right hand column do;

• Enhance the brand’s architecture: clearly display the different subsidiaries and branded products to help visitors understand the benefits of Printoptical Technology across the several markets;

• Improved playback: make displaying on mobile devices more easy, accessible and interactive. Just try: take your I-Pad, try to sweep for example the main and sub carousels on the homepage: that’s how easy navigation should be!

• Personalizing each user’s visit to increase engagement. Some corporate movies are added, with many more to follow!

New site, new blog: Lighting-Inspiration.com
At the same time, I am personally setting up a new ‘Lighting Inspiration blog’. For the time stocking a lot of impressive news on 3D printed optics, but parallel it will held also a lot of 3D printing, product inspiration and event news for global lighting professionals. I strongly recommend visiting it to my technology followers, to learn about the further backgrounds and to understand the impact 3D printing will have on the future of manufacturing.

Regarding this new platform, please feel free to leave your comments, and I’d like to encourage you to post your recommendations as well. I would be happy to address them!

For now, wish you a happy surf on this great new website, and a great discovery journey!

The Digitization of Plastics Fabrication (1)

“Emerging ‘Printoptical Technology’ brings future optical manufacturing to a digital level with optimal flexibility, zero need for tooling and real inventory, including no more obsolete inventory write offs”

You may remember your home cabinets filled up with CD’s, not so long ago. Then the computer industry, most notably Apple, invaded and digitized the music retail supply chain with small portable devices linked to online music stores. The resulting easy production and convenient commercial distribution throughout the world created an accessible stage for thousands of new music “stars” and gave users more choice and a new fast and affordable way of finding and receiving just the music they wanted whenever and wherever they wanted it. Since that time, CDs have started to get rare and the music landscape changed significantly through ‘going digital’. Digital production and inventory revolutionized a massive industry within just a few months.

Another Digital Revolution
In the global lighting industry, there is another digital revolution underway as part of the rapid shift to LED technologies. This time the impact is mainly on the luminaire makers and their suppliers rather than on the end customers, but the changes will be equally profound. The new mode of digital production, digital inventory, and just-in-time supply chain will be for the optical components of their products – the most critical determinant of style, and the industry’s chronic, debilitating “bottle neck” of design, sourcing, and manufacturing. Instead of the delay and expense of making numerous prototypes and then, finally, expensive molds for optics, the new “mold” will be digital – the CAD design file itself. Optics will be produced by a digital automated process directly from the CAD file, on demand, and delivered on a just-in-time basis.

One-step CAD-to-Optic Printoptical Process

One-step CAD-to-Optic Printoptical Process

Figure: One-Step CAD-to-Optic Fabrication, optics directly printed from a CAD file.

Any desired optics can be specified and ordered online in quantities ranging from an economic minimum of just one up to tens of thousands per month, with short lead times, rapid prototyping cycles, and easy made-to-order customization and agile adaptation to design changes or product mix over time.

One practice, one recent development is worth noticing and has been tremendously successful on the front: the “digital manufacturing” of optics through ‘Printoptical Technology’. Printoptical Technology avoids complicated and costly conventional processes used to produce many types of optical components, and allows a quick and easy availability of optical prototypes, low- and larger volume series as well, through a one-step CAD-to-optic manufacturing process. That’s how the manufacturing of LED lighting optics would be like in the future.

Movie: Plastic optics for LED lighting fixtures and many other applications can now be custom manufactured by a new one-step “CAD-to-Optic” 3D-printing process which affords flexibility and freedom of design never before possible. 

Digital Manufacturing Explained
Additive Manufacturing is a collective term that encompasses a number of technologies utilized to produce products directly from digital Computer Aided Design (CAD) files: one step CAD-to-product manufacturing. Additive Manufacturing, sometimes referred to as “3D Printing” or “Rapid Prototyping”, uses an additive process – in contrast to the subtractive processes of milling, turning, grinding and polishing typically utilized in traditional manufacturing to make products directly or make tooling for extrusion or injection molding. Traditional machining methods, which involve cutting away material to achieve the desired complex shape. In sharp contrast additive manufacturing creates parts by building them up with progressive computer-controlled deposition of material, in a process that resembles printing, but with multiple passes over the work until the desired 3D form is achieved. In recent months, nearly all of the leading business publications have featured articles about how additive manufacturing will change how almost all product design and fabrication is done and how this will streamline and accelerate the supply chain for many industries.

Was this article of interest? This first introduction into “Digital Optics Manufacturing” will be continued with more “in-depth” articles coming weeks to help leading industries and professionals to understand this new manufacturing standard. Keep on following!

Simplifying Optical Prototyping by ‘Printoptical Technology’

“How Additive Optical Manufacturing can help OEM Lighting Manufactures and Optical Designers creating new designs, customize them and change optical products easily, market them faster, and increase the overall supply chain efficiency along the way”

Birth of a new Key Technology
Printoptical Technology’ is a new industry key in additive manufacturing and volume production of LED lighting optics, innovated by the Dutch LUXeXceL Group. It is a brand new form of “additive manufacturing’, otherwise known as 3D printing, focusing on the ‘on-demand’ printing of prototypes, mid – and high volume series of LED lighting optics.

Printoptical Revolution
I recently noticed that experts have called this year 2012 “the year of 3D-printing” and they expect this technology in general to break into the mainstream market on short term with new industrial viability. As “industry insider” I think they’re right. As part of this, the coming of Printoptical Technology will stimulate and speed up that process of market change significantly. Personally, I believe that this new (disruptive) Printoptical Technology is going to cause a revolution in the manufacturing of optics and will change the manufacturing landscape as we know it dramatically.

The so called “Printoptical Revolution” has started early 2011 and the developments to the technology have allowed companies involved in the LED lighting industry saving time and money, while significantly shortening the time-to-market and increasing customization capabilities at the same time.

Printoptical Technology – at a glance
Let me highlight some key benefits of this technology for the global LED lighting market:

• Significant reduction of development cost and time;
• Shortened time-to-market;
• Simplified supply chain;
• Functional, customized optics easily printed;
• Simple or complex optics produced “on-demand”;
• Easy in-process lens modifications;
• Free-form optics, virtually in any shape;
• No excessive start-up and tooling cost;
• One single manufacturing process;
• Integrated optical- and fixture design;
• New design opportunities.

Optical Prototypes and production series can be printed easily, on demand. Moreover, it will bring designers plenty of new opportunities in design and functionality, thanks to the unique digital way of designing and the opportunity to run “single-job” printing process. The creation and short term availability of optics has never been so easy and quick!

Diverse printoptical products printed in one single shot

Finally, I am really sorry for this long post and taking so many of your time. But I trust this topic has your special interest, that’s why I am happy to explain this promising technologies’ backgrounds in more detail. Thanks for your interest and spending your time here.

If you are willing to experience more on this topic, I can recommend you a recent article in LED Professional Review (LPR), the leading worldwide authority for LED lighting technology information: http://bit.ly/GDtTMF (page 50-54).

How LED lighting optics and graphics seamlessly combine

Last time I wrote you, I promised to come up with some attractive results of both functional- and decorative optical designs, as well as some first design impressions of the new 3D printed optics website. Unfortunately, I cannot provide you with any decorative design patterns or applications yet. Nevertheless, I expect that the displayed, functional LED lighting optics below will impress you that much, that you will forgive me for now…

Printed LED optics: Fresnel lenses – micro optics – combined grapics

Right, they’re printed! All of them. LUXeXceL’s revolutionary 3D printing process will offer great value to the global LED lighting market. From now on, OEM lighting manufacturers and designers of LED lighting optics will generate significant cost reductions and time savings on the additive manufacturing of their LED lighting optics!

We’ll catch this and more of these revolutionary LED lighting optics in the next upcoming website. I am happy to share you the first design results of the homepage. It needs to be improved slightly, but I guess we’re almost there.

EXXELENS - functional lighting home

Printed LED Optics – Functional Lighting_Homepage

We allow users to switch easily from a ‘functional lighting’ (blue, technical) onto a ‘decorative lighting’ (orange, design full) environment on the right hand top. This is where technical and architectural lighting meets each other. Designs now can go ‘hand-in-hand’ with lens functionality, since it’s possible to foresee a functional LED lighting optic with any graphic elements, structure, typography, etc. The opposite is also true: decorative design lighting can now contain also functional optical structures and elements, e.g. integrated magnifiers.

Decorative, right. That’s exactly what you missed out in this post. But I promise you to come up with that information in one of my next posts.

How LED-lighting and sports perfectly match: night-time LED-snowboarder

For those who share my passion about LED lighting and snowboarding, check out this amazing video of a night-time snowboarder lighting up the last of the winter snow.

Fashion photographer and filmmaker Jacob Sutton swaps the studio for the slopes of Tignes in the Rhône-Alpes region of south-eastern France, with a luminous after hours short starring pro snowboarder. The electrifying film sees the snowboarder light up the snow-covered French hills in a bespoke LED-enveloped suit courtesy of designer and electronics whizz John Spatcher.

A Jacob Sutton movie

Good design is obvious, great design is translucent

It’s less than a month ago since I wrote about the upcoming launch of the Luximpress website. Cool stuff to work with for graphimedia and digital artists, working with SFX and light, or different. Here’s another innovation coming up, based on the same “Printoptical Technology” of LUXeXceL: 3d printed optics for the lighting industry.

The future outlook for this application is great, since it offers great flexibility in terms of design and supply chain simplification. Moreover, it is possible to combine both functional structures and elements with any graphic textures, typograhy, etc. to be printed in one single 3D printing process, the so called “Optographics”. As a result of this, the company will not only provide functional LED lighting optics, but also decorative, high-impact lamp shades & shields.

A comprehensive website will be launched on short term, to foresee in the international market demand for LED lighting optics and provide LUXeXceL’s users a central platform to work from and foresee in their information demand.

Next time I write you, I will show some expressive results of both functional optics and decorative optical design patterns. That time, maybe some first design impressions of the website will be available.

Some ‘high lights’ to impress

Last time I wrote I promised to come back to you with further Printoptical Technology examples for the Graphic Industry. Here are some.

Luximpress - impressions of Printoptical Technology for graphimedia

Transparent 3D relief print – Integrated Optical Magnifier – 3D stained glass replica

Printoptical Technology adds value to graphic products and provide designers with new graphic design opportunities. Personally, I am convinced that it will be one of the crucial ‘tools’ that will help the industry to mutate from a commodity industry into an added value industry in the near future. This is a real “must-have” for trendsetting interior designers, 3D printing enthusiasts, lighting designers, digital 3D artists.

Bringing those innovative printing solutions to market, Luximpress will contribute significantly to the future of the printing industry and service to facilitate customer differentiation and development. The shift to a new technology is not anymore determined by volumes and capacity expansion, but more and more by flexibility and differentiation. This is where it shines out! Moreover, the coming of this brand new technology will enforce the printing industry position in an evolving value chain, which includes this kind of ‘new media’ in particular.

The possibilities are various, the designers’ creativity is the only limitation…!