Interview(s): 3D Printing Lighting Objects and Components – How does the Future look like?

Recently, I’ve been invited to give a dual interview for The Light Design, an online magazine dedicated to light and to the role it plays in cultural and creative industries, as well as in everyday life. I am delighted to share it with you for a deeper understanding of the future of additive manufacturing for lighting professionals!

Creative Light in Everyday Life

The Light Design caters to technicians, architects, artists, and to all those involved in creative fields. The magazine’s articles analyse light from different points of view, and tackle topics that range from concert and theatre lighting to the role of light in art and architecture, without neglecting interior, residential, commercial and architectural lighting.

The Light Design nicely captured the interviews on their inspiring blog. Here you can read the full interviews:

#1 – 3D Printing a lighting object – how does the future look like?
#2 – 3D printing of Lighting Components

Enjoy the perspectives, and please don’t be afraid to talk back, either via The Light Design Forum or just leave your comments in the footer section of this blog.

3D Printing Eleven_Article Banner

3DPrinting.Lighting – Technology and Inspiration Blog for Lighting Professionals

Finally, I could recommend you following the blog 3Dprinting.Lighting to stay informed about the latest developments, inspiration and practical user cases.

Make sure you won’t stay behind in the 3D Printing Revolution!

Amsterdam is Flooding

Virtual Flood by Studio Roosegaarde at Museumplein Amsterdam Raises Water Awareness

Experience the Vulnerability of Water
Following the Artist Daan Roosegaarde latest installation “Waterlight” in Westervoort back in February, Studio Roosegaarde lets the visitor experience the almost forgotten power and vulnerability of water again. This time, the Museumplein in Amsterdam is hosting a 3-day public light art event to raise water awareness end emphasise the beauty and power of light.
Marcodevisser.com_Waterlicht by Roosegaarde_Musuemplein_A'dam (2)

As a virtual flood, Waterlight shows how high the water could reach without human intervention.

8 Acres of Inner Amsterdam Flooded
Located in the inner city of Amsterdam, Museumplein is an 8 acre square located in the inner city of Amsterdam that has been virtually placed underwater through the use wavy lines of light. Like the ‘Rainbow Station‘ project at Amsterdam Central Station by the end of 2014, ‘Waterlight’ is realized by implementing the latest LED technology, enabling software and lighting optics.
Marcodevisser.com_Waterlicht by Roosegaarde_Musuemplein_A'dam (1)Public Access and Openings
Waterlight by Roosegaarde” is open to the public and can be experienced from May 11 – 13th between 22:00 and 00:00 at the Museumplein in Amsterdam.

Waterlicht Project

WATERLICHT is the dream landscape about the power and poetry of water. As a virtual flood, it shows how high the water could reach without human intervention. Innovation is within the DNA of the Dutch landscape via its waterworks and creative thinking, yet we’ve almost seem to forgotten this. WATERLICHT is a powerful and poetic experience to remember.

WATERLICHT consists of wavy lines of light made with the latest LED technology, software and optics. First created for the Dutch Waterboard Rijn & IJssel in Westervoort, the artwork has now travelled to Museumplein Amsterdam.

Related post(s): ‘Waterlight’ by Studio Roosegaarde Creates Dutch Water Awareness

Photos in this post are courtesy of Studio Roosegaarde/Pim Hendriksen.

The Basics of Lighting Optics

I’ve been writing from time to time about optics, especially related to use in illumination applications. As we learn more about light, what we really want to understand is optics that is the control of light. Let’s take a moment to step back to the basics, and learn a bit more on the optics types available and what they are used for.

Optics: The Science of Light
In fact, optics is a branch of physics: the science of light. Optics technology is concerned with all aspects of the behavior of light and thus covers a broad territory. In the International Year of Light, optics are one of the key-attention area’s, along with a variety of other light based technologies.

What is Optics? Optics is the branch of physics which involves the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it.

The Future of Optics
Earlier, I’ve been writing on the ‘Future of Optics Engineering‘ and how the coming of “3D printed optics” will impact and change the future of optics manufacturing. If this topic has your special interest, I can really recommend you reading it!

Below is avideo from the Philips Lighting University, a basic and helpful movie for anyone interested to learn more about lighting optics, light reflection and refraction.

4D printing – The Future of Design

Normally, we create things by use of 3D printing and we’re done. After the printing process is finalized, we take our parts and then we assemble them. But what if we want the parts to be able to transform and change their shape over time? If we want them to assemble themselves?

 
From 3D printing to 4D printing
The promises of 4D printing are truly amazing. Actually, 4D printing is about using a 3D printer to produce self-reconfiguring, programmable material that intelligently arranges itself into basically any object with no need for computers or electricity. Objects are not only be printed, but thanks to geometric code, they could later also change their shape and transform on their own.
 
4D printing for Lighting
This is just a first blogpost on 4D printing to discover this new dimension to 3D printing. I am curious to see how it will influence the future of the lighting industry as well, after 3D printing is finally is adopted. And how it will lead to new features for lighting development and design.
 
We’ll keep on watching the progress, I’ll keep you posted in case any crazy things happen!
 

21st Century Optics Design Engineering

“A Day from the life of John” – 21st Century Optics Engineering

Optics system design and engineering is a pretty genious job. To be taken seriously, you’ll need at least a 10+ years of experience before you’re really recognized as a seasoned ‘senior’. Due to todays ongoing digitization, computers are important to most engineers, as with other fields of engineering. They are used with instruments, in optics design creations and simulations, and for many other applications. Optics designers need to extend their skills by frequent training sessions and study new developer skills.

Optical System Design Challenges
Designing optical systems isn’t an easy job. Optics engineers make use of optics to solve problems and to design and build devices that make light do something useful. It comes with real challenges on the system design itself and the engineering work. Developing new optics solutions requires them to understand and apply the science of optics in substantial detail, in order to understand what outcome is physically possible to achieve. But they also must know what is practical in terms of technologies that are available, materials to use, costs they have to count with, design methods that can be applied, etcetera. Fortunately, most of the work is well known and, if extreme projects appear, you can overcome it easily by bringing in the right skills, study, experience or hire someone from your network to help you out.

Optical Design Frustrations
More frustrating are the challenges that are outside of your own capabilities: prohibitively expensive optics design software, manufacturing tolerances, and most likely a torn in the flesh of every designer: the manufacturing tooling needed to prototype and manufacture the real end product. Expensive upfront investments in tooling, uncertainties about the outcome and tooling limitations are real bottlenecks in the freedom and flexibility of today’s optics designer.

But what if…
Tooling is no longer needed? Your minimum order quantity is as low as one piece? Cost effective trial & error and iterations could be implemented? Design freedom is (almost) unlimited? Here’s the video that I promised in my earlier post. Digital 3D printing of functional optics is just around the corner. And it’s amazingly powerful. Watch – … – recognize – …- act!

Let’s break the mold! Help making the life of Optics Designers easier, spread the word by sharing this video!

The Digitization of Plastics Fabrication (4)

“Printoptical Technology contributes to a Third Industrial Revolution”

New industrial revolution
The consequences of all these changes amount to a third industrial revolution, as randomly speculated about in many different media nowadays. The first industrial revolution of mankind took place in Great-Britain (late 18th century), starting with the mechanization of the textile industry. In the decades hereafter, the machines were started to be used to produce things, instead of crafting them by hand, with an incredible increase of efficiency. They correctly understood that we not only need to work hard any more, but more smart, to realize the potential benefits offered by mechanical technologies. The second industrial revolution on its turn found its roots in the USA, in the early 20th century. With the discovery of the assembly line whole industries entered into a new era of mass production. The age of “getting digital” nowadays would mean another significant change in how products are engineered and manufactured. The 3D printing and on-demand availability of optics significantly contributes to this ongoing development and is expected to be one of the most influential steps the industry has known in the last decades.

Conclusions
In summary, 3D printing of optics is amazingly powerful and will continue to develop into a major part of the product development process. Printoptical Technology makes significant leaps forward in technology, and brings revolutionary, not merely evolutionary, advances in the additive manufacturing of LED lighting optics. As Printoptical Technology almost daily evolve and the prices of systems decrease, it enables to experience a whole new way to develop optics and launch the lighting industry into mass customization. Numerous leading lighting companies have adopted Printoptical Technology in an innovative way, leading the charge in additive manufacturing. And this on-demand business model is spreading. Adopting digital manufacturing of optics isn’t just a good idea – it’s a necessity for any company committed to retaining (or creating) competitive advantage within the highly crowded global lighting place. It is here, and it is fixed staying. This technology is no longer considered a science fiction. Rest assured, once Printoptical Technology is experienced in-house, more applications and cost saving will be discovered. It might still be in its infancy, and there are still issues to solve and challenges to overcome, but it will drive almost all additive manufacturing of optics in the future and it must be a part of every portfolio.

This article is the last part in a range written on “Digital Optics Manufacturing”, intended to let the lighting industry and it’s insiders know about Printoptical Technology and it’s improved opportunities for the manufacturing of LED lighting optics. Thanks for reading these posts, see you soon!

Sources:
[1] Wohlers Report 2012 – Additive Manufacturing and 3D Printing, State of the Industry
Annual Worldwide Progress Report – www.wohlersassociates.com
[2] The Economist – Manufacturing & Innovation, Special Report, April 2012

The Digitization of Plastics Fabrication (3)

“Printoptical Technology offers Unparalleled Design Freedom to Designers and Luminaire Makers resulting in Optimized Design Processes, a shortened Product Time-to-Market and an overall Increased Competitive Edge”

Optimized Design Processes
The longer an optic takes in the design and prototyping phase, the longer it takes the lighting fixture to get to market, meaning less potential profit for the company. With increasing pressure to get products to market quickly, companies are compelled to make quick yet accurate decisions during the conceptual stage of design. These decisions can affect the majority of total cost factors by establishing material selection, manufacturing techniques and design longevity. Printoptical Technology can optimize design processes for greatest potential profit by speeding iterations through product testing. An optimized design process with more prototype iterations can help minimize risk of product failure. Because Printoptical Platforms can produce optics with fine feature details, designers can be more confident in their work. Making needed changes as early as possible saves money and time. Optics made by 3D printing can give optical designers and engineers a thorough understanding of potential lighting products earlier in the design process than other methods, minimizing the risk that problems will go unnoticed until it’s too late.

Reasons to Adopt Printoptical Technology
The practical reasons for adopting Printoptical Technology are fairly obvious: no tooling required, new design opportunities, easy iterations, fast product availability. However, consider the effects that it can have on the scale and reach of projects. With Printoptical Technology designers are no longer constrained by space or volume limitations, like when they use injection molding. They can build greener, smarter and bigger optics and experiment with all types of new layouts without loss of tooling and investments.

Freeform Optics
Moreover, it is possible to create freeform optics: novel optics that are designed in a asymmetric and complex way. Freeform optics are difficult to make using the traditional fabrication methods, and the making would rather have to be based on ultra-precision machining technology. This novel Printoptical Technology can be widely applied to machining freeform plastic optics. In this way, innovative optoelectronic products can be supplied to the market at a competitive price. Printoptical Technology gives the freedom to suit nearly every optical application, giving the design freedom to achieve the exact optic the maker wants, without compromise.

New ways of design, out of the box thinking
Designers are encouraged to broaden their horizon and to change their ‘mindset’, and start a completely new way of thinking. The results of the design process can be new geometric or freeform shapes that may include transparent prisms or lenses, as well as colored lenses, lens combinations, full color 3D graphics and textures, like integrated surface structures and company logos. Even though the material is deposited in discrete drops, the resulting surface is perfectly smooth. This is accomplished by delaying the time between the jetting of the droplets and the application of UV light, which gives the polymer time to flow and for each droplet to lose its spherical form. The mechanism for surface formation is surface tension, a phenomenon of nature which produces surfaces more smooth that any man-made process can match. Optical quality surfaces are achieved with no post processing.

Advanced multi-lens, integrated in wood grain and matte texture

Advanced multi-lens, integrated in wood grain and matte texture

Shortened time to market
With these digital manufacturing applications, the designers and engineers can make alterations to their optical designs in seconds, and see how every minute change will affect the entire fixture design. The Printoptical Software provides a highly cost-efficient means of producing numerous optical design iterations and gaining immediate feedback throughout the critical beginning stages of the development process. The ability to refine form, fit and function of the optics quickly can significantly improve production costs and time to market. This can create a distinct competitive advantage for those companies who include Printoptical Technology as an integral part of their overall design process. The speed, consistency, accuracy and low cost of this process will help lighting companies reduce the overall time-to-market and maintain a competitive edge. The engineers can properly address all potential problems with an optic before construction begins, they’ll save time, money, physical resources and maximize the efficiency of their team. What would have seemed extremely tedious and time-consuming in the past years – such as designing and setting up an production line, can now be done in a fraction of the time.

Increased competitiveness
Undoubtedly, 3D printing of optics is a step in the right direction for saving our planet. The world economy is in dire straits, and highly respected global lighting companies are laying off workers by hundreds, or have to shut down completely. Local markets are flooded with low-quality, cheap lighting alternatives and suppliers are shutting their doors due to devastating decreases in consumer and OEM demand. Right now, the main question on every manufacturer’s mind is: how do we stay competitive? It turns out that in this case, helping the environment can dramatically help the bottom line. By cutting upfront cost, generating less need for working capital, delivering a high return on investment and contributing to revenue increases, digital manufacturing can save companies money, time and make them even more attractive as a potential business partner.

Thanks for reading part 3/4 of this blog on the digitization of optics fabrication. Next week, the last edition will be published with more views on a ‘third industrial revolution’ and conclusions.